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The amination of 1,4-cyclohexanediol in supercritical ammo-
nia has been studied in a continuous fixed-bed reactor at 135 bar.
An unsupported cobalt catalyst stabilized by 5 wt% Fe afforded
the main reaction products 4-aminocyclohexanol and 1,4-diamino-
cyclohexane with a cumulative selectivity of 97% at 76% conver-
sion. Excess of ammonia and short contact time favored the desired
reactions. At low and high conversions the amination selectivity
decreased due to the formation of dimers and oligomers and degra-
dation products. Recycling of the unreacted diol and amino alcohol
intermediate can provide an alternative economic process for the
synthesis of 1,4-diaminocyclohexane.  © 1999 Academic Press
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INTRODUCTION

Amination of aliphatic alcohols on a metal catalyst pro-
vides economic access to a multitude of amines (1-4). How-
ever, the yields and selectivities are usually rather low in the
synthesis of aliphatic diamines from the corresponding di-
ols and ammonia.

The metal-catalyzed synthesis of aliphatic amines from
the corresponding alcohol includes dehydrogenation of the
alcohol to a carbonyl compound, condensation with ammo-
nia to form an imine or enamine, and hydrogenation to the
amine (5, 6). Each intermediate and the product amine can
take part in condensation, decarbonylation, disproportion-
ation, and hydrogenolysis side reactions (7-10). The synthe-
sis of a diamine from the corresponding diol requires the
repetition of all three steps which increases the by-product
formation. In addition, the bifunctional intermediates have
the tendency to undergo oligomerization reactions (6, 11,
12). A further difficulty is that the intermediate and prod-
uct amines are significantly more reactive than ammonia.
Application of supercritical fluids provides interesting op-
portunities for improving the efficiency (conversion, selec-
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tivity, catalyst lifetime, and separation) of heterogeneous
catalytic processes. Advances made in this field have been
discussed in a recent review (13).

In a previous study we found that the application of
supercritical ammonia (scNH3) as a solvent and reactant
affords remarkable selectivity improvement in the amina-
tion of 1,3-propanediol, compared with the subcritical pres-
sure procedure (14). The selectivity improvement could be
traced to the suppression of hydrogenolysis (degradation)-
type side reactions. In the present study we describe the
amination of 1,4-cyclohexanediol (Scheme 1) under super-
critical conditions, using an iron-stabilized cobalt catalyst
in a continuous high-pressure reactor.

At present, diaminocyclohexanes are manufactured by
the catalytic hydrogenation of aromatic amines such as
p-phenylenediamine (15, 16). Considering the availability,
oxidation stability, and toxicology of the reactant, the am-
ination of cyclohexanediol is an attractive alternative. 1,4-
Diaminocyclohexane is an important chemical applied as
chain extender in polyurea elastomers (17), ingredient in
lubricants (18), agent in the synthesis of ZSM-35 (19), and
component of antitumor agent platinum complexes (20).
To our knowledge direct amination starting from 1,4-cyclo-
hexanediol has not been reported so far.

EXPERIMENTAL

For the preparation of the 95 wt% Co-5 wt%o Fe catalyst,
the metal nitrates (molar ratio of 20/1; total metal ni-
trates: 0.18 mol) were dissolved in 500 ml water. One hun-
dred grams of an aqueous solution containing 20 wt%
(NH4),CO3 was added at room temperature over a 1-h pe-
riod until a pH of 7 was reached. The suspension was stirred
for 2 h and filtered. After careful washing, the precipitate
was dried at 100°C, calcined at 400°C for 2 h, and activated
by hydrogen reduction at 335°C for 4 h. Structural prop-
erties of the reduced catalyst were BET surface area of
12 m? g1, specific pore volume of 0.1 cm® g~1, and mean
pore diameter of 43 nm. A detailed characterization of the
catalyst will be presented elsewhere (21).
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SCHEME 1. Important reactions occurring during the amination
of 1,4-cyclohexanediol with ammonia. The intermediates and products
shown were identified by GC-MS.

The apparatus comprised the dosing system for the
ammonia—alcohol mixture (ISCO D500 syringe pump) and
hydrogen (mass flow meter), the high-pressure continu-
ous fixed-bed reactor, and a gas/liquid separator. The re-
actor was constructed of Inconel-718 tubing of 13-mm in-
ner diameter and 38-ml volume. The temperature in the
reaction zone was measured with a thermocouple located
in the center of the tube and was regulated by a PID cas-
cade controller. The total pressure in the reactor system
was set by a Tescom backpressure regulator. Standard reac-
tion conditions were 8.0 g catalyst, 165°C, 135 bar, 40,000 gs
mol~! contact time (WHSV: 1.63 g g~*h~1), and molar ratio
of the reactants R-OH/NH3/H, = 1/60/2.

The liquid products were analyzed using a gas chromato-
graph (HP-5890A with FID detector and HP-1701 column)
and were identified by GC-MS analysis.

The following reactant purities were quoted by the man-
ufacturer: 1,4-cyclohexanediol > 98% (Fluka), ammonia
99.98% (Pan-Gas), hydrogen 99.999% (Pan-Gas), and ni-
trogen 99.995% (Pan-Gas).

The existence of a single fluid phase under the experi-
mental conditions used (130 bar, 200°C) has been corrobo-
rated by independent visual tests with two diols in similarly
diluted mixtures (1.5 mol% diol). The critical data for am-
monia are T¢ =132.4°C and P, = 114.8 bar (22).

RESULTS AND DISCUSSION

As stated in the Introduction, the activity of ammonia is
usually lower than that of the intermediate and product
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amines. To compensate this reactivity difference, a rela-
tively large NH3/R-OH molar ratio is necessary to obtain
acceptable selectivities to primary amines. Accordingly, all
reactions were carried out at 165°C and 135 bar with a mo-
lar ratio NH3s/R-OH = 60/1. A small amount of hydrogen in
the feed (1-5 mol%) was sufficient to prevent the undesired
dehydrogenation reactions and the formation of nitrilesand
carbonaceous deposits.

Figure 1 illustrates the influence of temperature on the
amination of 1,4-cyclohexanediol (1) in supercritical am-
monia over a 95% Co-5% Fe catalyst. The conversion
indicates the consumption of 1 via dehydrogenation to
4-hydroxycyclohexanone or acid-base catalyzed side reac-
tions. This metal-catalyzed step has been found to be rate
determining in the amination of simple aliphatic alcohols
(23).

The formation of the amination products 4-amino-
cyclohexanol (2, Scheme 1) and 1,4-diaminocyclohexane
(3) shows the typical course of a consecutive reaction se-
ries. A maximum yield of 32% for the amino alcohol (2)
was achieved at 165°C, and a maximum yield of 54% for
the diamine (3) at 185°C.

The selectivity to the diamine (3) could be further im-
proved by varying the contact time. Some examples are
shown in Table 1. The two sets of experiments at 165 and
195°C depict the same tendency: at higher contact times
the by-products formed by hydrogenolysis dehydration and
dimerization/oligomerization became dominant. At 165°C
the catalyst was rather selective and the amount of by-
products did not exceed 3% up to 40,000 gs mol~t. Con-
trary to the expectation, there was only a small change in
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FIG. 1. Influence of conversion on the amination of 1,4-cyclo-

hexanediol over a 95% Co-5% Fe catalyst; standard conditions.



1,4-DIAMINOCYCLOHEXANE SYNTHESIS

TABLE 1

Influence of the Contact Time on the Amination of 1,4-Cyclo-
hexanediol (1, in Scheme 1) over a 95% Co-5% Fe Catalyst under
Otherwise Standard Conditions

. . Yield (%)
Contacttime  Temperature  Conversion
[gs mol~Y] °C) (%) 2 3 By-products
30,000 165 70 21 46 3
40,000 165 76 32 42 2
60,000 165 93 9 29 55
20,000 195 99 6 67 26
30,000 195 100 3 55 42
40,000 195 100 3 54 43
60,000 195 100 1 52 47

the diamine yield at 195°C, despite of the complete con-
version of diol. The amount of by-products barely changed
when doubling the contact time from 30,000 to 60,000 gs
mol~1. Beside dimers and oligomers, degradation products
such as 7 and 8 (Scheme 1) could be identified in the prod-
uct mixture. Figure 2 illustrates the cumulative selectivity
to the amino alcohol (2) and diamine (3) as a function of
conversion, on the basis of the data in Fig. 1. The amination
selectivity has an optimum of 97% at 76%o diol conversion.
The lower selectivity at low and high conversion is due to
the formation of dimers (4-6), oligomers, and degradation
products. At low conversion the dimer (5) was the main by-
product. At high conversion (and longer contact times) 2
and 3 were transformed to dimers (mainly 6) and insoluble
oligomers, and the generation of degradation products, e.g.,
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FIG. 2. Influence of temperature on the cumulative selectivity to

4-aminocyclohexanol (2) and 1,4-diaminocyclohexane (3) over a 95%
Co-5% Fe catalyst; standard conditions.
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aminocyclohexane (8), was also favored. The degradation
products were partly further aminated (with ammonia or
some amines).

CONCLUSIONS

An alternative catalytic route for the synthesis of 1,4-
diaminocyclohexane has been shown that is based on the
amination of 1,4-cyclohexanediol over a Co-Fe catalyst in
scNHj3. The amination affords 67% yield at almost com-
plete conversion. The efficiency of the reaction can be fur-
ther improved by recycling the unreacted diol and amino
alcohol intermediate, reducing the amount of by-products
to ca. 3%. The high chemical efficiency combined with the
engineering advantages of continuous operation and easy
separation from the supercritical solvent and reactant am-
monia provides a good basis for industrial application of
the process.
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